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ABSTRACT 
The statechart modeling mechanism is an essential element in 
the UML standard. Software engineers use statecharts to capture 
dynamic behaviors of objects and their interactions. In this paper 
we demonstrate how abstracting statecharts can help in building 
models that are easy to maintain and extend. Through the use of 
aspect-oriented techniques, we can build orthogonal abstract 
statecharts that can be reused in different contexts. Adding 
statechart submodels into the core statechart submodel involves a 
weaving process that a modeler can utilize during the design 
phase. This paper attempts to demonstrate the benefits of 
employing aspect-oriented techniques in the pursuit of 
abstracting statecharts.  
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1. INTRODUCTION 
Separation of concerns is a fundamental software engineering 
principle that has been addressed since the early days of the 
programming discipline [1].  Separation of concerns is perceived 
as an essential principle to decompose software systems into 
smaller modules in order to improve comprehensibility, 
maintainability, and adaptability of software systems. A 
crosscutting concern is one that is not easily modularized into a 
modular language construct. Tangling is when two concerns are 
implemented in such a way that their codes are intermixed, 
making it hard to distinguish the implementation of each concern 
separately. Aspect-oriented technology [2,3,19] focuses on the 
identification and modular representation of crosscutting 
concerns to generate ‘single-concerned’ software components 
that can be developed in isolation from each other and at a later 
stage be woven together to produce a fully operational software 
system. 

The main rationale behind modeling software systems 
is to raise the level of abstraction and focus on capturing and 
understanding software requirements early in the analysis and 
design phase of the software lifecycle. UML [12] and object-
oriented modeling techniques provide the user with a rich set of 

constructs and design principles to model object-oriented 
software systems. However, designers often find it difficult to 
map certain requirements (logging, security, etc.) to a single 
design concern. These requirements end up being scattered 
across many different core concerns. It is necessary to recognize 
and identify the interactions between crosscutting concerns and 
core concerns before we attempt to express them explicitly in 
submodels.  

Statecharts [5] provide a mechanism to model and 
capture the dynamic behavior of objects using extended finite 
state machine concepts. A statechart is attached to a class that 
specifies all behavioral aspects of the objects in that class. When 
a crosscutting concern is tangled with a core concern the 
statechart that represents the core contains overlapping concerns 
which are hard to maintain and comprehend. In other words, 
standard statecharts do not resolve the issue of the misalignment 
of requirements, design, and implementation since requirements 
that belong to different concerns may crosscut different design 
model elements. The tangling problem originally discovered at 
the programming level cannot be avoided at the design level with 
current statechart modeling techniques and practices. Therefore, 
a process to identify and separate requirements into their 
prospective model elements will greatly simplify system design 
and comprehensibility.  

The essence of aspect-oriented modeling [11] is to 
build on object-oriented modeling by enhancing it with the 
ability to model crosscutting concerns separately. The 
constructed submodels simplify the verification and validation of 
the constructed software system and ease maintenance and 
extension of the submodels. The system’s core functionality is 
represented by a submodel, and each of the crosscutting concerns 
can be represented by a separate submodel. Aspect-oriented 
modeling can help in bridging the gap between software design 
and implementation through the use of advanced features of 
UML/Statecharts. The main deficiency in current aspect-oriented 
modeling techniques [11] however, is a lack of abstraction that 
would allow for the reuse of crosscutting concern design 
elements. 

This paper describes a framework and design 
methodology that extends [11] to permit an object’s behavior to 



be captured in a statechart according to its individual concerns, 
and a mechanism for weaving crosscutting concerns (modeled in 
one or more separate statecharts) together into the rest of the  
system. The framework takes one or more statechart designs 
along with the declarations of how they should be woven and 
generates executable code from them. Abstraction capabilities 
are provided to allow crosscutting concern design elements to be 
reused with other core concerns in other applications. Our 
approach uses a declarative method of event reinterpretation 
between orthogonal statecharts that are instructed how to 
interpret each others events in order to treat foreign events as if 
they were native events. 

The rest of this paper is organized as follows. Section 2 
describes classical behavioral modeling with statecharts. Section 
3 describes current aspect-oriented modeling techniques with 
statecharts and their strengths and weaknesses. Section 4 
describes a proof of concept framework that addresses the 
weaknesses from Section 3. Section 5 goes through an example 
using the framework. Section 6 discusses related work. Section 7 
states the conclusions we found in our work. 

 

2. BEHAVIORAL MODELING WITH 
STATECHARTS 
Statecharts are a tool used to model the dynamic behavior of a 
class. A statechart is an effective design tool when the decision 
on what action to take in response to a given input is dependent 
not only on the input, but also on the current state of the system. 
An object's behavior can be decomposed into states. A state 
captures a system’s history while abstracting away unhandled 
outside stimuli. An event handled in one state may cause a 
completely different reaction than the same event in another 
state. A statechart specifies three things: the stable states in 
which an object may live, the events that trigger a transition from 
state to state, and the actions that occur on each state change 
[13].   

The basic principle in a reactive system is [5,20,21]:  
 

 “When event a in occurs in state A, if condition C is true at the 
time, the system transfers to state B” 

 

States are drawn as rounded rectangles in statecharts.  

Events are stimuli in the system that may cause 
transitions between states, they are drawn as directed arrows 
with a label specifying the event name. An optional condition 
may be included that is required to evaluate to true before a 
transition can take place. Conditions are placed in a set of ‘[‘ ‘]’ 
after the event name. Actions are executable sequences that can 
be associated with transitions between states, they are specified 
with a ‘/’: 

 

event[conditional guard]/action 

 

Upon entering or exiting a state, an action may be 
invoked. The actions associated with the entrance to, and exit 
from states are not event dependent, they happen regardless of 

how a state is entered or exited. A statechart must have a starting 
state indicated with a transition emanating from a large dot. 

A simple statechart is said to have an ‘exclusive-or’ 
relationship between the states. This ‘Or-composition’ means 
that a statechart may be in one, and only one, state at a time. A 
statechart may also exhibit ‘And-composition’ by employing 
orthogonal regions. A statechart with orthogonal regions is 
composed of two or more independent statecharts. Being in a 
statechart with orthogonal regions means that in every region, 
one and only one, of the states from each composed statechart 
will be active. Orthogonal regions allow you to avoid intermixing 
the independent behaviors as a cross product and, instead, to 
keep them separate [15]. 

 

 
Figure 1. Statechart with orthogonal regions from Harel’s ‘A 

Visual Formalism for Complex Systems’ [14] 

For example, when the statechart in Figure 1 is entered 
the two composed statecharts (separated by a dashed line) will 
both be active and one state from each will always be selected, 
that is, there is still ‘Or-composition’ among each of the 
individual statecharts. A key feature of orthogonal regions is that 
events from every composed statechart are broadcast to all 
others. Therefore, an event can cause transitions in two or more 
orthogonal statecharts simultaneously. If event ‘a’ in Figure 1 is 
introduced while the active states are B and F, a transition will 
occur from B to C, as well as from F to G.  

The composed statecharts are allowed to communicate 
through these broadcast events. Orthogonality is a way to avoid 
an explosion in the number of possible states. If this technique 
wasn’t employed in Figure 1 then the system would require the 
states BE, BG, BF, CE, CG, CF or the cross product of all the 
states in all the statecharts. Instead, with the use of orthogonal 
regions, the number of states is simply the sum of all the states in 
all the statecharts. Each subsystem can be in its own orthogonal 
region as a way to decompose a complex system.   

Statecharts are an elegant way of expressing the 
behavior of objects by means of states, events, and actions based 
on extended finite state machine concepts. These statecharts, 
used for designing behavior in objects, can even be the basis for 
executable code as described in [15]. However, like most design 
methodologies, it is possible to have concerns that do not easily 
fit into a single logical unit. Statecharts are no exception.   



Consider the bounded buffer example. There are 
different concerns for a bounded buffer, such as synchronization 
and scheduling, which crosscut the core requirements of adding 
and removing elements from the buffer. Without aspect-
orientation these concerns would be tangled with the core 
functionality. The tangled crosscutting concerns make it difficult 
to reason about all three concerns in isolation. 

 

3. ASPECT-ORIENTED DESIGN 
Aspect-oriented software development (AOSD) strives to keep 
concerns separate at all levels of the development process. 
Separation of concerns promises to reduce the complexity of 
system development by decomposing the system into cohesive 
units.  Quantified programming statements are ones that have an 
effect on many loci in the underlying code. Aspect-oriented 
programming can be understood as the desire to make quantified 
statements about the behavior of programs, and to have these 
quantifications hold over programs written by oblivious 
programmers [18]. With AOSD, all concerns are separated and 
developed in isolation, then the crosscutting concerns are woven 
together with the core concerns using quantified statements about 
how to interact with the core.  

Currently, the Unified Modeling Language (UML) [5] 
is the language of choice when modeling systems using 
statecharts. In our recent work [11], we have proposed an aspect-
oriented design technique that uses UML/Statecharts to simplify 
the design of object-oriented software systems. The approach 
provides developers with a methodology to create semi-
independent statecharts that broadcast events to orthogonal 
regions that represent core and aspect behaviors.  

In the design methodology laid out in [11] both core 
concerns and crosscutting concerns are modeled as static classes. 
Each class is then assigned a statechart that describes the 
dynamic behavior of the class. Associations between core and 
aspect classes form the relationships necessary for the classes, 
and thus the statecharts, to communicate. Each core and 
crosscutting concern becomes one orthogonal region in a 
statechart. This is how implicit weaving is accomplished. Each 
orthogonal region will broadcast events and receive events from 
other orthogonal regions. Because class diagrams and statecharts 
are used to fully describe objects it is possible to take these 
descriptions and generate code from them. 

 The process prescribed by the methodology from [11] 
consists of nine steps. In the first step of the process the 
developer identifies core objects in the domain. These often are 
the easiest to discover because they are exactly the same objects 
that would be candidates in a non-aspect-oriented approach. 
These objects represent core concerns and will be referred to as 
‘the core’ of the system. 

 The next step is to identify the crosscutting concerns in 
the system and classify them into aspect objects. This is an 
important step because this is where the developer attempts to 
find and modularize concerns that typically get scattered across 
many core concerns. This step may need to be repeated many 
times during the development of the system. Often, crosscutting 
concerns are not as easy to identify when developers are first 

specifying a system. As developers knowledge of the system 
grows, so too does their awareness and ability to identify 
crosscutting concerns. These objects will be referred to as 
‘aspects’. 

 The third step is to create associations between the 
core and aspect classes that dictate how communication will be 
achieved between the core and aspect classes. In this 
methodology this is equivalent to specifying the temporal order 
that events will be propagated from statecharts in orthogonal 
regions. That is, the structure of the relationships between the 
classes specifies the order that events will move through the 
statecharts. This allows aspect statecharts to access an event 
either before or after the core statecharts. Creating the 
associations specifies that order. The primary reason the 
associations between classes determines the order that 
statecharts handle events is because the authors wanted to make 
use of existing CASE tools. Using this approach amounted to a 
lightweight extension of UML.  

The fourth step is to model each core and aspect object 
as a formal class. Next in step five a class diagram is built using 
the output from the previous steps. Step six involves identifying 
the states, transitions, and dependencies between the composed 
statecharts for each of the classes. States and transitions are 
identified for each class and dependencies between class’s states 
are identified. Step seven models the output from step six into 
formal statecharts associated with each of the classes. Each 
class’s statechart is composed into orthogonal regions.  

The dependencies between individual classes’ 
statecharts are hard coded events that need to be propagated to 
achieve communication between the disparate statecharts. This is 
accomplished in step eight. Finally, step nine is to repeat the 
process steps one through eight throughout the rest of the 
development process as other crosscutting concerns are 
discovered.  

 The benefit of this process is to avoid creating 
incredibly complex statecharts with core and crosscutting 
concerns tangled together. In a tangled implementation, 
crosscutting concerns are usually handled by using complex sets 
of guard conditions that block transitions to states. For example, 
a bounded buffer statechart that handles synchronization of the 
buffer may have additional guards at each state specifying 
whether a transition can be made if the buffer is full, empty, or 
partially full. This way of specifying behavior is very difficult to 
reason about and is incredibly difficult to maintain. The tangled 
buffer statechart diagram loses its simplicity and elegance once 
synchronization is introduced.  

In Figure 2, the process is applied to the bounded 
buffer problem. One can create a ‘Synchronization’ statechart 
and a ‘Scheduling’ statechart and put them in orthogonal regions 
with the core ‘Buffer’ statechart and the result is a protected 
‘Bounded Buffer’ statechart.  

 



Figure 2. Solution to the bounded buffer problem with 
scheduling and synchronization aspects and hard coded event 

translation from [11] 

 

Using this approach in Figure 2, when a ‘GET’ event is 
received in the scheduling aspect an ‘evGet’ event is propagated 
to the buffer. The novelty of this approach is the development of 
additional statecharts to handle crosscutting concerns. These 
additional statecharts introduce events that are broadcast to other 
statecharts in the other orthogonal regions creating a sequence of 
event transitions that protect the buffer. The main drawback of 
this approach, however, is the explicit event propagation 
performed by the developer.  

This approach requires that the developer hard code the 
propagation of events to specify the order needed to protect the 
buffer. There is tight coupling between the core and aspect 
statechart and a lack of obliviousness resulting in the core 
developer and the aspect developer being aware of each other’s 
state transitions and events. If quantification and obliviousness 
could be introduced into such a system the level of abstraction 
would be raised significantly and reuse of core and aspect classes 
would be possible.  

Other than the coupling problem the solution is quite 
elegant. Each concern is encapsulated and abstracted into its own 
first class unit and the concerns are implicitly woven together 
using the broadcast events. Our approach extends the ideas in 
[11] by replacing hard coded event propagations with high level 
declarations about how an event in one statechart can be treated 
like a completely different event in another statechart. An aspect-
oriented statechart framework was created to implement these 
ideas in a proof of concept tool. With the framework, a developer 
can take two or more independently developed executable 
statechart objects and weave them together with some high level 
declarations about how the statecharts crosscut each other and 
which events shall be reinterpreted in the orthogonal regions. 
This can be done without hard coding events in the submodels. 
Our approach increases the level of abstraction and makes it 
easier to develop complex systems that have a tyranny of 
crosscutting concerns.  

4. ASPECT-ORIENTED STATECHART 
FRAMEWORK 
We have taken a step forward from the work described in [11] by 
designing and implementing a framework that permits a 
statechart design to be translated into skeleton code for a class. 
In addition, two or more of these statechart objects may be joined 
to create orthogonal regions. Next, we permit crosscutting 
statecharts in orthogonal regions to be woven together by 
specifying which events in one statechart shall be reinterpreted to 
have meaning in another. This eliminates the need for hard 
coding of event propagations. Event reinterpretation is done 
obliviously to both the core and aspect statechart designer.  

Libraries of core and aspect statecharts can be 
developed concurrently and independently, and combined only 
when needed for a particular application. For example, a 
‘Synchronization’ aspect statechart class may be developed 
independent of any core functionality statechart. A weaving 
designer can reuse the ‘Synchronization’ aspect for any system 
that requires synchronized access to a resource. The weaving 
designer only needs to specify which statechart to crosscut and 
which events in the core to interpret as requests to access a 
resource. 

 The proof of concept framework has been implemented 
in Java and consists of classes that represent events, states, 
statecharts, event handlers, orthogonal regions, and orthogonal 
region containers. To create an executable statechart that 
represents a core or crosscutting concern one inherits from the 
framework’s Statechart class. State objects are added to the 
Statechart object and transitions between states are specified 
with Statechart methods. Event handler objects have methods 
that are called in response to transitions between states, they 
represent actions. A table of event handler objects is created and 
the framework manages the calling of the appropriate methods 
based on receiving an event in a given state. The region container 
maintains an event queue and dispatches events to all the 
orthogonal regions in such a way that all the statecharts see the 
broadcast event before the next event is handled.  

 The handling of crosscutting concerns is achieved by 
specifying that one statechart crosscuts another. This is achieved 
by a Statechart method call that takes another Statechart as a 
parameter. The effect is that the crosscutting statechart is placed 
in an orthogonal region with the core statechart. Statecharts that 
crosscut one another interact by examining broadcast events and 
treating them as native events. The mapping between events in 
disparate statecharts is performed by the weaving developer.  

Events are intercepted and ‘reinterpreted’ from one 
event type in the core to another event type in the aspect 
statechart. This causes transitions to take place in both the core 
and the aspect statecharts. Further, the order of aspect state 
transitions and statechart event handlers can be specified. One 
can choose to have an aspect statechart’s state transition occur 
before or after the core state transition. This solves the problem 
of event ordering that is introduced by eliminating hard coded 
event propagation from [11]. The benefit of this is that the aspect 
event handler can alter, consume, replace, or introduce new 
events before or after the core statechart handles an event.  



The declaration of event reinterpretation can be 
described by stating that (see Figure 3):  

 

If the core statechart is in State ‘X’ and event ‘y’ is introduced, 
and if the aspect statechart is in State ‘A’ treat ‘y’ exactly as if it 
were event ‘b’, and allow the aspect statechart to make the 
transition either before or after the core. 

  

 
Figure 3. Event reinterpretation 

 

5. EXAMPLES USING THE FRAMEWORK 
Perhaps the best way to describe the framework is to look at a 
solution to a problem using it. Imagine a communication protocol 
represented as a statechart. Figure 4 presents the statechart 
diagram. 

 

 
Figure 4. Core Communication Statechart 

 

Whenever a request to send is received for this object a ‘send’ 
event will be introduced into the statechart. Whenever there is 
data to be received a ‘rec’ event will be introduced. The event 
data (that travels with the event object) may be an IP like packet 
with source and destination addresses and the communication 
data to transmit or receive. Once the send or receive operation 
completes an event will be generated that will cause a transition 
back to the idle state. 

 This statechart can be modeled in the framework as a 
set of classes representing states, transitions, and actions by 
inheriting from the ‘Statechart’ class. Classes that inherit from 
‘Statechart’ often include an interface that allows non-Statechart 
objects to interact with them. These methods then determine 
which events shall be injected into the statechart and introduce 
the events into the system. 

Now imagine that a requirement was added to handle 
encryption and decryption of any message that is sent or received 
outside of a certain network. In a traditional system this concern 
might be tangled with the communication concern. It is better in 
terms of comprehensibility and reusability, however, to keep 
them separate. A statechart could be created to handle this 
situation, see Figure 5. 

 

 
Figure 5. Encryption Aspect Statechart 

 

This statechart starts in the ‘Local Connection’ state 
and will transition to ‘Remote Connection’ whenever a ‘remote 
ip’ event is handled that has, as part of the event data, a packet 
with a non-local address in it. When in the ‘Remote Connection’ 
state an ‘encrypt’ event will cause the statechart to encrypt the 
relevant part of the event data. Similarly, when a ‘decrypt’ event 
is handled in this state it will decrypt the relevant part of the 
event data. Lastly, when in the ‘Remote Connection’ state a 
‘local ip’ event will cause a transition to the ‘Local Connection’ 
state if the packet contains a local address. 

Weaving these two statecharts together involves 
declaring that certain events in the core communication 
statechart should be intercepted and reinterpreted as encryption 
related events in the encryption aspect statechart. In particular, to 
handle the transitions to and from the ‘Local Connection’ and 
‘Remote Connection’ states a weaving developer can take these 
two statecharts and declare:  

 

1. If the core is in the ‘Idle’ state and a ‘send’ event is 
introduced, and if the aspect is in the ‘Local Connection’ 
state treat ‘send’ exactly as if it were a  ‘remote ip’ event in 
the aspect statechart. Allow the aspect statechart to handle 
the event before the core.  

2. If the core is in the ‘Idle’ state and a ‘send’ event is 
introduced, and if the aspect is in the ‘Remote Connection’ 
state treat ‘send’ exactly as if it were a  ‘local ip’ event in 
the aspect statechart. Allow the aspect statechart to handle 
the event before the core. 

 

The aspect statechart will only make the transitions if the 
event data contains either a non-local or local address, 
respectively. The guards in the aspect statechart guarantee this 
by examining the IP-like packet in the event data. The weaving 
developer would state that the aspect statechart should handle 
the reinterpreted ‘send’ event before the core statechart handles 



it. He would do this so that one ‘send’ event could cause a 
transition to ‘Remote Connection’ and be treated as an ‘encrypt’ 
event that would cause the data to be encrypted (see rule 3 
below).  

Next the weaving developer would specify that ‘send’ 
events should also be treated as ‘encrypt’ events:  

 

3. If the core is in the ‘Idle’ state and a ‘send’ event is 
introduced, and if the aspect is in the ‘Remote Connection’ 
state treat ‘send’ exactly as if were an ‘encrypt’ event in the 
aspect statechart. Allow the aspect statechart to handle the 
event before the core. 

 

The aspect statechart must again handle the event before the 
core. This will cause the packet in the ‘send’ event’s data to be 
encrypted before the core communication statechart sends the 
packet. The core would be completely oblivious that the 
encryption took place. 

 

 
Figure 6. Reinterpreted events 

The framework provides a simple, clean interface for 
specifying weaving and event reinterpretation. In the example 
above, weaving can be specified using a reference to the core 
‘Statechart’ object and a reference to the aspect ‘Statechart’ 
object: 

core.crosscutBy(encryption); 

This will take the two statechart submodels and weave them into 
orthogonal regions. In the course of this weaving, methods will 
be called to map events in the core and aspect statecharts. These 
methods hold the declarations of which events need to be 
reinterpreted. A weaving developer would fill in these details in 
a subclass of the encryption aspect ‘Statechart’ and are 
equivalent to the three rules stated above: 

reinterpretEvent(core,"IDLE","send", 
"LOCAL_CONNECTION","remoteip", 
Statechart.PREHANDLE); 
 

reinterpretEvent(core,"IDLE","send", 
"REMOTE_CONNECTION","localip", 
Statechart.PREHANDLE); 
 
reinterpretEvent(core,"IDLE","send", 
"REMOTE_CONNECTION","encrypt", 
Statechart.PREHANDLE); 

To understand exactly what happens in the framework 
imagine that these two statecharts were woven together into 
orthogonal regions where the communication statechart is in the 
‘Idle’ state while the encryption aspect is in the ‘Local 
Connection’. If a ‘send’ event is introduced, then before the 
transition to ‘Tx’ in the core, ‘send’ will be treated as ‘remote 
ip’ and a transition to ‘Remote Connection’ will occur (if the 
guard evaluates to true). Then, since ‘send’ should be interpreted 
as ‘encrypt’ before the core handles it, a transition will occur 
from ‘Remote Connection’ to itself and the data inside the packet 
will be encrypted. Lastly, the transition to ‘Tx’ will occur and the 
communication statechart will send an encrypted packet. 

Similar declarations of reinterpretation would be stated 
that handle the receiving and decryption of network data. After 
weaving these two statecharts together and specifying how events 
should be interpreted, encryption on the network is 
accomplished. This is done without either statechart explicitly 
knowing about the other. The aspect statechart can be used in 
any situation that requires encryption of IP like packets. 

The novelty of this approach is to allow events to be 
reinterpreted in different orthogonal regions and to alter the 
semantics of orthogonal statecharts. In traditional orthogonal 
statecharts when an event is broadcast the order that the 
composed statecharts handle it is non-deterministic. Our 
approach is to create a deterministic relationship between certain 
event transitions. We guarantee that, if such a relationship exists, 
an aspect statechart will have the ability to alter the event or 
event data and make a transition either before or after the core. 
This is similar to the AspectJ notion of before and after advice. 
The ordering of events was achieved in [11] by explicitly 
propagating hard coded events to different orthogonal regions. 
The cost of that solution was a more complex set of statecharts 
that were not reusable and that lacked obliviousness. 

In this new approach, quantification is achieved by 
allowing statecharts to be composed orthogonally so that events 
occurring in one statechart may be mapped, or reinterpreted, to 
events in the composed statecharts. There is no restriction on 
which statecharts can crosscut one another, that is, an aspect 
statechart may crosscut a core statechart or it may crosscut 
another aspect statechart. All that is required for weaving is that 
the statecharts inherit from the framework’s ‘Statechart’ class. 
The scope of the quantification is the set of events in a composed 
set of statecharts. The action interaction (how disparate actions 
communicate) between the core and the aspect is in the event and 
the event data. Since events in the aspect statecharts are aliases 
(equivalent to reference parameters in procedural programming 
languages) for core events, the aspects can communicate through 
the event data. In particular, the event and event data may be 
altered or consumed.  



6. RELATED WORK 
Different approaches [7,8,9,10,11] have been proposed to 
address the issue of aspect-oriented modeling. Few of these 
approaches have focused on the modeling process while others 
have focused on UML profiles.  The profile based approaches 
[8,10] have attempted to present the modeler with a UML profile 
for aspect-oriented modeling.  The work presented in [9] has 
focused on modeling the crosscutting concerns by means of 
stereotyped packages. The approach presented in [10] has argued 
that aspects can be best represented by means of stereotyped 
classifiers.  However, previous approaches haven’t addressed the 
issue of abstracting statecharts as a mechanism by which 
quantification and obliviousness can be supported at the model 
level. 

 

7. CONCLUSION  
Our approach presented in this paper combines the expressive 
power of Harel’s statecharts with aspect orientation to handle 
crosscutting concerns in the design and development of software 
systems. Our aspect-oriented statechart framework provides the 
capability to specify the dynamic behaviors of a crosscutting 
concern without committing to where, when, and on what core 
behaviors the aspect will be applied to. The decision about 
where, when and what core behaviors will be affected by an 
aspect statechart can be specified independently of the 
development of the core and independently of the development of 
the aspect. The two development teams do not have to be 
cognizant of each other. Only the weaving developers need to be 
cognizant of the core and aspect statecharts. This simplifies the 
design of core and crosscutting concerns and provides the 
obliviousness that is desirable in aspect-oriented approaches.  

 We have shown that aspect orientated techniques can 
be used to abstract and modularize statecharts. We have 
extended previous work in this area to separate and provide a 
level of reusability for crosscutting concerns. In addition, we 
created a framework to prove that the ideas are sound. What was 
missing from the previous work [11] was a method to have 
events act as aliases for other events and a way to specify the 
order that events should be handled. Our approach eliminates the 
need for hard coded event propagation. We hope to extend this 
work to examine how real time constraints might be modeled 
using composed statecharts in orthogonal regions. 
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