
Using Aspects to Abstract and Modularize Statecharts

Mark Mah one y
Carth age Colle ge

Ke nos h a, W I

m m ah one y@ carth age .e du

Ate f Bade r
Luce nt Te ch nologie s

Nape rville , IL

abade r@ luce nt.com

Om ar Aldaw ud
Luce nt Te ch nologie s

Nape rville , IL

oaldaw ud@ luce nt.com

Tz illa Elrad
Illinois Ins titute of Te ch nology

Ch icago, IL

e lrad@ iit.e du

ABSTRACT
The statechart modeling mechanism is an essential element in
the UML standard. Software engineers use statecharts to capture
dynamic behaviors of objects and their interactions. In this paper
we demonstrate how abstracting statecharts can help in building
models that are easy to maintain and extend. Through the use of
aspect-oriented techniques, we can build orthogonal abstract
statecharts that can be reused in different contexts. Adding
statechart submodels into the core statechart submodel involves a
weaving process that a modeler can utilize during the design
phase. This paper attempts to demonstrate the benefits of
employing aspect-oriented techniques in the pursuit of
abstracting statecharts.

Keywords
Aspect-oriented software development, statecharts, UML.

1. INTRODUCTION
Separation of concerns is a fundamental software engineering
principle that has been addressed since the early days of the
programming discipline [1]. Separation of concerns is perceived
as an essential principle to decompose software systems into
smaller modules in order to improve comprehensibility,
maintainability, and adaptability of software systems. A
crosscutting concern is one that is not easily modularized into a
modular language construct. Tangling is when two concerns are
implemented in such a way that their codes are intermixed,
making it hard to distinguish the implementation of each concern
separately. Aspect-oriented technology [2,3,19] focuses on the
identification and modular representation of crosscutting
concerns to generate ‘single-concerned’ software components
that can be developed in isolation from each other and at a later
stage be woven together to produce a fully operational software
system.

The main rationale behind modeling software systems
is to raise the level of abstraction and focus on capturing and
understanding software requirements early in the analysis and
design phase of the software lifecycle. UML [12] and object-
oriented modeling techniques provide the user with a rich set of

constructs and design principles to model object-oriented
software systems. However, designers often find it difficult to
map certain requirements (logging, security, etc.) to a single
design concern. These requirements end up being scattered
across many different core concerns. It is necessary to recognize
and identify the interactions between crosscutting concerns and
core concerns before we attempt to express them explicitly in
submodels.

Statecharts [5] provide a mechanism to model and
capture the dynamic behavior of objects using extended finite
state machine concepts. A statechart is attached to a class that
specifies all behavioral aspects of the objects in that class. When
a crosscutting concern is tangled with a core concern the
statechart that represents the core contains overlapping concerns
which are hard to maintain and comprehend. In other words,
standard statecharts do not resolve the issue of the misalignment
of requirements, design, and implementation since requirements
that belong to different concerns may crosscut different design
model elements. The tangling problem originally discovered at
the programming level cannot be avoided at the design level with
current statechart modeling techniques and practices. Therefore,
a process to identify and separate requirements into their
prospective model elements will greatly simplify system design
and comprehensibility.

The essence of aspect-oriented modeling [11] is to
build on object-oriented modeling by enhancing it with the
ability to model crosscutting concerns separately. The
constructed submodels simplify the verification and validation of
the constructed software system and ease maintenance and
extension of the submodels. The system’s core functionality is
represented by a submodel, and each of the crosscutting concerns
can be represented by a separate submodel. Aspect-oriented
modeling can help in bridging the gap between software design
and implementation through the use of advanced features of
UML/Statecharts. The main deficiency in current aspect-oriented
modeling techniques [11] however, is a lack of abstraction that
would allow for the reuse of crosscutting concern design
elements.

This paper describes a framework and design
methodology that extends [11] to permit an object’s behavior to

be captured in a statechart according to its individual concerns,
and a mechanism for weaving crosscutting concerns (modeled in
one or more separate statecharts) together into the rest of the
system. The framework takes one or more statechart designs
along with the declarations of how they should be woven and
generates executable code from them. Abstraction capabilities
are provided to allow crosscutting concern design elements to be
reused with other core concerns in other applications. Our
approach uses a declarative method of event reinterpretation
between orthogonal statecharts that are instructed how to
interpret each others events in order to treat foreign events as if
they were native events.

The rest of this paper is organized as follows. Section 2
describes classical behavioral modeling with statecharts. Section
3 describes current aspect-oriented modeling techniques with
statecharts and their strengths and weaknesses. Section 4
describes a proof of concept framework that addresses the
weaknesses from Section 3. Section 5 goes through an example
using the framework. Section 6 discusses related work. Section 7
states the conclusions we found in our work.

2. BEHAVIORAL MODELING WITH
STATECHARTS
Statecharts are a tool used to model the dynamic behavior of a
class. A statechart is an effective design tool when the decision
on what action to take in response to a given input is dependent
not only on the input, but also on the current state of the system.
An object's behavior can be decomposed into states. A state
captures a system’s history while abstracting away unhandled
outside stimuli. An event handled in one state may cause a
completely different reaction than the same event in another
state. A statechart specifies three things: the stable states in
which an object may live, the events that trigger a transition from
state to state, and the actions that occur on each state change
[13].

The basic principle in a reactive system is [5,20,21]:

 “When event a in occurs in state A, if condition C is true at the
time, the system transfers to state B”

States are drawn as rounded rectangles in statecharts.

Events are stimuli in the system that may cause
transitions between states, they are drawn as directed arrows
with a label specifying the event name. An optional condition
may be included that is required to evaluate to true before a
transition can take place. Conditions are placed in a set of ‘[‘ ‘]’
after the event name. Actions are executable sequences that can
be associated with transitions between states, they are specified
with a ‘/’:

event[conditional guard]/action

Upon entering or exiting a state, an action may be
invoked. The actions associated with the entrance to, and exit
from states are not event dependent, they happen regardless of

how a state is entered or exited. A statechart must have a starting
state indicated with a transition emanating from a large dot.

A simple statechart is said to have an ‘exclusive-or’
relationship between the states. This ‘Or-composition’ means
that a statechart may be in one, and only one, state at a time. A
statechart may also exhibit ‘And-composition’ by employing
orthogonal regions. A statechart with orthogonal regions is
composed of two or more independent statecharts. Being in a
statechart with orthogonal regions means that in every region,
one and only one, of the states from each composed statechart
will be active. Orthogonal regions allow you to avoid intermixing
the independent behaviors as a cross product and, instead, to
keep them separate [15].

Figure 1. Statechart with orthogonal regions from Harel’s ‘A

Visual Formalism for Complex Systems’ [14]

For example, when the statechart in Figure 1 is entered
the two composed statecharts (separated by a dashed line) will
both be active and one state from each will always be selected,
that is, there is still ‘Or-composition’ among each of the
individual statecharts. A key feature of orthogonal regions is that
events from every composed statechart are broadcast to all
others. Therefore, an event can cause transitions in two or more
orthogonal statecharts simultaneously. If event ‘a’ in Figure 1 is
introduced while the active states are B and F, a transition will
occur from B to C, as well as from F to G.

The composed statecharts are allowed to communicate
through these broadcast events. Orthogonality is a way to avoid
an explosion in the number of possible states. If this technique
wasn’t employed in Figure 1 then the system would require the
states BE, BG, BF, CE, CG, CF or the cross product of all the
states in all the statecharts. Instead, with the use of orthogonal
regions, the number of states is simply the sum of all the states in
all the statecharts. Each subsystem can be in its own orthogonal
region as a way to decompose a complex system.

Statecharts are an elegant way of expressing the
behavior of objects by means of states, events, and actions based
on extended finite state machine concepts. These statecharts,
used for designing behavior in objects, can even be the basis for
executable code as described in [15]. However, like most design
methodologies, it is possible to have concerns that do not easily
fit into a single logical unit. Statecharts are no exception.

Consider the bounded buffer example. There are
different concerns for a bounded buffer, such as synchronization
and scheduling, which crosscut the core requirements of adding
and removing elements from the buffer. Without aspect-
orientation these concerns would be tangled with the core
functionality. The tangled crosscutting concerns make it difficult
to reason about all three concerns in isolation.

3. ASPECT-ORIENTED DESIGN
Aspect-oriented software development (AOSD) strives to keep
concerns separate at all levels of the development process.
Separation of concerns promises to reduce the complexity of
system development by decomposing the system into cohesive
units. Quantified programming statements are ones that have an
effect on many loci in the underlying code. Aspect-oriented
programming can be understood as the desire to make quantified
statements about the behavior of programs, and to have these
quantifications hold over programs written by oblivious
programmers [18]. With AOSD, all concerns are separated and
developed in isolation, then the crosscutting concerns are woven
together with the core concerns using quantified statements about
how to interact with the core.

Currently, the Unified Modeling Language (UML) [5]
is the language of choice when modeling systems using
statecharts. In our recent work [11], we have proposed an aspect-
oriented design technique that uses UML/Statecharts to simplify
the design of object-oriented software systems. The approach
provides developers with a methodology to create semi-
independent statecharts that broadcast events to orthogonal
regions that represent core and aspect behaviors.

In the design methodology laid out in [11] both core
concerns and crosscutting concerns are modeled as static classes.
Each class is then assigned a statechart that describes the
dynamic behavior of the class. Associations between core and
aspect classes form the relationships necessary for the classes,
and thus the statecharts, to communicate. Each core and
crosscutting concern becomes one orthogonal region in a
statechart. This is how implicit weaving is accomplished. Each
orthogonal region will broadcast events and receive events from
other orthogonal regions. Because class diagrams and statecharts
are used to fully describe objects it is possible to take these
descriptions and generate code from them.

 The process prescribed by the methodology from [11]
consists of nine steps. In the first step of the process the
developer identifies core objects in the domain. These often are
the easiest to discover because they are exactly the same objects
that would be candidates in a non-aspect-oriented approach.
These objects represent core concerns and will be referred to as
‘the core’ of the system.

 The next step is to identify the crosscutting concerns in
the system and classify them into aspect objects. This is an
important step because this is where the developer attempts to
find and modularize concerns that typically get scattered across
many core concerns. This step may need to be repeated many
times during the development of the system. Often, crosscutting
concerns are not as easy to identify when developers are first

specifying a system. As developers knowledge of the system
grows, so too does their awareness and ability to identify
crosscutting concerns. These objects will be referred to as
‘aspects’.

 The third step is to create associations between the
core and aspect classes that dictate how communication will be
achieved between the core and aspect classes. In this
methodology this is equivalent to specifying the temporal order
that events will be propagated from statecharts in orthogonal
regions. That is, the structure of the relationships between the
classes specifies the order that events will move through the
statecharts. This allows aspect statecharts to access an event
either before or after the core statecharts. Creating the
associations specifies that order. The primary reason the
associations between classes determines the order that
statecharts handle events is because the authors wanted to make
use of existing CASE tools. Using this approach amounted to a
lightweight extension of UML.

The fourth step is to model each core and aspect object
as a formal class. Next in step five a class diagram is built using
the output from the previous steps. Step six involves identifying
the states, transitions, and dependencies between the composed
statecharts for each of the classes. States and transitions are
identified for each class and dependencies between class’s states
are identified. Step seven models the output from step six into
formal statecharts associated with each of the classes. Each
class’s statechart is composed into orthogonal regions.

The dependencies between individual classes’
statecharts are hard coded events that need to be propagated to
achieve communication between the disparate statecharts. This is
accomplished in step eight. Finally, step nine is to repeat the
process steps one through eight throughout the rest of the
development process as other crosscutting concerns are
discovered.

 The benefit of this process is to avoid creating
incredibly complex statecharts with core and crosscutting
concerns tangled together. In a tangled implementation,
crosscutting concerns are usually handled by using complex sets
of guard conditions that block transitions to states. For example,
a bounded buffer statechart that handles synchronization of the
buffer may have additional guards at each state specifying
whether a transition can be made if the buffer is full, empty, or
partially full. This way of specifying behavior is very difficult to
reason about and is incredibly difficult to maintain. The tangled
buffer statechart diagram loses its simplicity and elegance once
synchronization is introduced.

In Figure 2, the process is applied to the bounded
buffer problem. One can create a ‘Synchronization’ statechart
and a ‘Scheduling’ statechart and put them in orthogonal regions
with the core ‘Buffer’ statechart and the result is a protected
‘Bounded Buffer’ statechart.

Figure 2. Solution to the bounded buffer problem with
scheduling and synchronization aspects and hard coded event

translation from [11]

Using this approach in Figure 2, when a ‘GET’ event is
received in the scheduling aspect an ‘evGet’ event is propagated
to the buffer. The novelty of this approach is the development of
additional statecharts to handle crosscutting concerns. These
additional statecharts introduce events that are broadcast to other
statecharts in the other orthogonal regions creating a sequence of
event transitions that protect the buffer. The main drawback of
this approach, however, is the explicit event propagation
performed by the developer.

This approach requires that the developer hard code the
propagation of events to specify the order needed to protect the
buffer. There is tight coupling between the core and aspect
statechart and a lack of obliviousness resulting in the core
developer and the aspect developer being aware of each other’s
state transitions and events. If quantification and obliviousness
could be introduced into such a system the level of abstraction
would be raised significantly and reuse of core and aspect classes
would be possible.

Other than the coupling problem the solution is quite
elegant. Each concern is encapsulated and abstracted into its own
first class unit and the concerns are implicitly woven together
using the broadcast events. Our approach extends the ideas in
[11] by replacing hard coded event propagations with high level
declarations about how an event in one statechart can be treated
like a completely different event in another statechart. An aspect-
oriented statechart framework was created to implement these
ideas in a proof of concept tool. With the framework, a developer
can take two or more independently developed executable
statechart objects and weave them together with some high level
declarations about how the statecharts crosscut each other and
which events shall be reinterpreted in the orthogonal regions.
This can be done without hard coding events in the submodels.
Our approach increases the level of abstraction and makes it
easier to develop complex systems that have a tyranny of
crosscutting concerns.

4. ASPECT-ORIENTED STATECHART
FRAMEWORK
We have taken a step forward from the work described in [11] by
designing and implementing a framework that permits a
statechart design to be translated into skeleton code for a class.
In addition, two or more of these statechart objects may be joined
to create orthogonal regions. Next, we permit crosscutting
statecharts in orthogonal regions to be woven together by
specifying which events in one statechart shall be reinterpreted to
have meaning in another. This eliminates the need for hard
coding of event propagations. Event reinterpretation is done
obliviously to both the core and aspect statechart designer.

Libraries of core and aspect statecharts can be
developed concurrently and independently, and combined only
when needed for a particular application. For example, a
‘Synchronization’ aspect statechart class may be developed
independent of any core functionality statechart. A weaving
designer can reuse the ‘Synchronization’ aspect for any system
that requires synchronized access to a resource. The weaving
designer only needs to specify which statechart to crosscut and
which events in the core to interpret as requests to access a
resource.

 The proof of concept framework has been implemented
in Java and consists of classes that represent events, states,
statecharts, event handlers, orthogonal regions, and orthogonal
region containers. To create an executable statechart that
represents a core or crosscutting concern one inherits from the
framework’s Statechart class. State objects are added to the
Statechart object and transitions between states are specified
with Statechart methods. Event handler objects have methods
that are called in response to transitions between states, they
represent actions. A table of event handler objects is created and
the framework manages the calling of the appropriate methods
based on receiving an event in a given state. The region container
maintains an event queue and dispatches events to all the
orthogonal regions in such a way that all the statecharts see the
broadcast event before the next event is handled.

 The handling of crosscutting concerns is achieved by
specifying that one statechart crosscuts another. This is achieved
by a Statechart method call that takes another Statechart as a
parameter. The effect is that the crosscutting statechart is placed
in an orthogonal region with the core statechart. Statecharts that
crosscut one another interact by examining broadcast events and
treating them as native events. The mapping between events in
disparate statecharts is performed by the weaving developer.

Events are intercepted and ‘reinterpreted’ from one
event type in the core to another event type in the aspect
statechart. This causes transitions to take place in both the core
and the aspect statecharts. Further, the order of aspect state
transitions and statechart event handlers can be specified. One
can choose to have an aspect statechart’s state transition occur
before or after the core state transition. This solves the problem
of event ordering that is introduced by eliminating hard coded
event propagation from [11]. The benefit of this is that the aspect
event handler can alter, consume, replace, or introduce new
events before or after the core statechart handles an event.

The declaration of event reinterpretation can be
described by stating that (see Figure 3):

If the core statechart is in State ‘X’ and event ‘y’ is introduced,
and if the aspect statechart is in State ‘A’ treat ‘y’ exactly as if it
were event ‘b’, and allow the aspect statechart to make the
transition either before or after the core.

Figure 3. Event reinterpretation

5. EXAMPLES USING THE FRAMEWORK
Perhaps the best way to describe the framework is to look at a
solution to a problem using it. Imagine a communication protocol
represented as a statechart. Figure 4 presents the statechart
diagram.

Figure 4. Core Communication Statechart

Whenever a request to send is received for this object a ‘send’
event will be introduced into the statechart. Whenever there is
data to be received a ‘rec’ event will be introduced. The event
data (that travels with the event object) may be an IP like packet
with source and destination addresses and the communication
data to transmit or receive. Once the send or receive operation
completes an event will be generated that will cause a transition
back to the idle state.

 This statechart can be modeled in the framework as a
set of classes representing states, transitions, and actions by
inheriting from the ‘Statechart’ class. Classes that inherit from
‘Statechart’ often include an interface that allows non-Statechart
objects to interact with them. These methods then determine
which events shall be injected into the statechart and introduce
the events into the system.

Now imagine that a requirement was added to handle
encryption and decryption of any message that is sent or received
outside of a certain network. In a traditional system this concern
might be tangled with the communication concern. It is better in
terms of comprehensibility and reusability, however, to keep
them separate. A statechart could be created to handle this
situation, see Figure 5.

Figure 5. Encryption Aspect Statechart

This statechart starts in the ‘Local Connection’ state
and will transition to ‘Remote Connection’ whenever a ‘remote
ip’ event is handled that has, as part of the event data, a packet
with a non-local address in it. When in the ‘Remote Connection’
state an ‘encrypt’ event will cause the statechart to encrypt the
relevant part of the event data. Similarly, when a ‘decrypt’ event
is handled in this state it will decrypt the relevant part of the
event data. Lastly, when in the ‘Remote Connection’ state a
‘local ip’ event will cause a transition to the ‘Local Connection’
state if the packet contains a local address.

Weaving these two statecharts together involves
declaring that certain events in the core communication
statechart should be intercepted and reinterpreted as encryption
related events in the encryption aspect statechart. In particular, to
handle the transitions to and from the ‘Local Connection’ and
‘Remote Connection’ states a weaving developer can take these
two statecharts and declare:

1. If the core is in the ‘Idle’ state and a ‘send’ event is
introduced, and if the aspect is in the ‘Local Connection’
state treat ‘send’ exactly as if it were a ‘remote ip’ event in
the aspect statechart. Allow the aspect statechart to handle
the event before the core.

2. If the core is in the ‘Idle’ state and a ‘send’ event is
introduced, and if the aspect is in the ‘Remote Connection’
state treat ‘send’ exactly as if it were a ‘local ip’ event in
the aspect statechart. Allow the aspect statechart to handle
the event before the core.

The aspect statechart will only make the transitions if the
event data contains either a non-local or local address,
respectively. The guards in the aspect statechart guarantee this
by examining the IP-like packet in the event data. The weaving
developer would state that the aspect statechart should handle
the reinterpreted ‘send’ event before the core statechart handles

it. He would do this so that one ‘send’ event could cause a
transition to ‘Remote Connection’ and be treated as an ‘encrypt’
event that would cause the data to be encrypted (see rule 3
below).

Next the weaving developer would specify that ‘send’
events should also be treated as ‘encrypt’ events:

3. If the core is in the ‘Idle’ state and a ‘send’ event is
introduced, and if the aspect is in the ‘Remote Connection’
state treat ‘send’ exactly as if were an ‘encrypt’ event in the
aspect statechart. Allow the aspect statechart to handle the
event before the core.

The aspect statechart must again handle the event before the
core. This will cause the packet in the ‘send’ event’s data to be
encrypted before the core communication statechart sends the
packet. The core would be completely oblivious that the
encryption took place.

Figure 6. Reinterpreted events

The framework provides a simple, clean interface for
specifying weaving and event reinterpretation. In the example
above, weaving can be specified using a reference to the core
‘Statechart’ object and a reference to the aspect ‘Statechart’
object:

core.crosscutBy(encryption);

This will take the two statechart submodels and weave them into
orthogonal regions. In the course of this weaving, methods will
be called to map events in the core and aspect statecharts. These
methods hold the declarations of which events need to be
reinterpreted. A weaving developer would fill in these details in
a subclass of the encryption aspect ‘Statechart’ and are
equivalent to the three rules stated above:

reinterpretEvent(core,"IDLE","send",
"LOCAL_CONNECTION","remoteip",
Statechart.PREHANDLE);

reinterpretEvent(core,"IDLE","send",
"REMOTE_CONNECTION","localip",
Statechart.PREHANDLE);

reinterpretEvent(core,"IDLE","send",
"REMOTE_CONNECTION","encrypt",
Statechart.PREHANDLE);

To understand exactly what happens in the framework
imagine that these two statecharts were woven together into
orthogonal regions where the communication statechart is in the
‘Idle’ state while the encryption aspect is in the ‘Local
Connection’. If a ‘send’ event is introduced, then before the
transition to ‘Tx’ in the core, ‘send’ will be treated as ‘remote
ip’ and a transition to ‘Remote Connection’ will occur (if the
guard evaluates to true). Then, since ‘send’ should be interpreted
as ‘encrypt’ before the core handles it, a transition will occur
from ‘Remote Connection’ to itself and the data inside the packet
will be encrypted. Lastly, the transition to ‘Tx’ will occur and the
communication statechart will send an encrypted packet.

Similar declarations of reinterpretation would be stated
that handle the receiving and decryption of network data. After
weaving these two statecharts together and specifying how events
should be interpreted, encryption on the network is
accomplished. This is done without either statechart explicitly
knowing about the other. The aspect statechart can be used in
any situation that requires encryption of IP like packets.

The novelty of this approach is to allow events to be
reinterpreted in different orthogonal regions and to alter the
semantics of orthogonal statecharts. In traditional orthogonal
statecharts when an event is broadcast the order that the
composed statecharts handle it is non-deterministic. Our
approach is to create a deterministic relationship between certain
event transitions. We guarantee that, if such a relationship exists,
an aspect statechart will have the ability to alter the event or
event data and make a transition either before or after the core.
This is similar to the AspectJ notion of before and after advice.
The ordering of events was achieved in [11] by explicitly
propagating hard coded events to different orthogonal regions.
The cost of that solution was a more complex set of statecharts
that were not reusable and that lacked obliviousness.

In this new approach, quantification is achieved by
allowing statecharts to be composed orthogonally so that events
occurring in one statechart may be mapped, or reinterpreted, to
events in the composed statecharts. There is no restriction on
which statecharts can crosscut one another, that is, an aspect
statechart may crosscut a core statechart or it may crosscut
another aspect statechart. All that is required for weaving is that
the statecharts inherit from the framework’s ‘Statechart’ class.
The scope of the quantification is the set of events in a composed
set of statecharts. The action interaction (how disparate actions
communicate) between the core and the aspect is in the event and
the event data. Since events in the aspect statecharts are aliases
(equivalent to reference parameters in procedural programming
languages) for core events, the aspects can communicate through
the event data. In particular, the event and event data may be
altered or consumed.

6. RELATED WORK
Different approaches [7,8,9,10,11] have been proposed to
address the issue of aspect-oriented modeling. Few of these
approaches have focused on the modeling process while others
have focused on UML profiles. The profile based approaches
[8,10] have attempted to present the modeler with a UML profile
for aspect-oriented modeling. The work presented in [9] has
focused on modeling the crosscutting concerns by means of
stereotyped packages. The approach presented in [10] has argued
that aspects can be best represented by means of stereotyped
classifiers. However, previous approaches haven’t addressed the
issue of abstracting statecharts as a mechanism by which
quantification and obliviousness can be supported at the model
level.

7. CONCLUSION
Our approach presented in this paper combines the expressive
power of Harel’s statecharts with aspect orientation to handle
crosscutting concerns in the design and development of software
systems. Our aspect-oriented statechart framework provides the
capability to specify the dynamic behaviors of a crosscutting
concern without committing to where, when, and on what core
behaviors the aspect will be applied to. The decision about
where, when and what core behaviors will be affected by an
aspect statechart can be specified independently of the
development of the core and independently of the development of
the aspect. The two development teams do not have to be
cognizant of each other. Only the weaving developers need to be
cognizant of the core and aspect statecharts. This simplifies the
design of core and crosscutting concerns and provides the
obliviousness that is desirable in aspect-oriented approaches.

 We have shown that aspect orientated techniques can
be used to abstract and modularize statecharts. We have
extended previous work in this area to separate and provide a
level of reusability for crosscutting concerns. In addition, we
created a framework to prove that the ideas are sound. What was
missing from the previous work [11] was a method to have
events act as aliases for other events and a way to specify the
order that events should be handled. Our approach eliminates the
need for hard coded event propagation. We hope to extend this
work to examine how real time constraints might be modeled
using composed statecharts in orthogonal regions.

8. ACKNOWLEDGEMENTS
We would like to thank Shangping Ren for her constructive
criticism and insights into the development of the framework and
this paper.

9. REFERENCES
[1] D. Parnas, “On the Criteria to Be Used in Decomposing

Systems into Modules,” Comm. ACM, vol. 15, no.12, 1972,
pp. 1053–1058.

[2] Elrad, T., Filman, R. E., and Bader, A. 2001. Aspect-
oriented programming. Com m . ACM 44, 10 (Oct.), 29–32.

[3] G. Kiczales et al., “Aspect-Oriented Programming,” Proc.
European Conf. Object-Oriented Programming, Lecture

Notes in Computer Science, no. 1241, Springer-Verlag,
Berlin, June 1997, pp. 220–242.

[4] Rashid, A., P. Sawyer, A. Moreira and J. Araujo. “Early
Aspects: A Model for Aspect-Oriented Requirements
Engineering,” IEEE Joint International Conference on
Requirements Engineering, IEEE Computer Society Press,
2002, pp. 199-202.

[5] Harel, D. and Gery, E., “Executable Object Modeling with
Statecharts” IEEE Computer 30 (7). 1997, pp. 31-42.

[6] K. Koskimies, T. Systä, J. Tuomi, and T. Männistö
“Automated Support for Modeling OO Software,” IEEE
Software, 15(1), 1998, pp. 87-94.

[7] Aldaw ud, O ., Elrad, T., and Bader, A. 2001. A UML profile
for aspect-oriented modeling. In W ork s h op on Advance d
Se paration of Conce rns in Obje ct-Orie nte d Syste m s
(OOPSLA), (Tampa, Florida).
http://www.cs.ubc.ca/~kdvolder/Workshops/OOPSLA2001/s
ubmissions/26-aldawud.pdf.

[8] Aldaw ud, O ., Elrad, T., and Bader, A. 2001. A UML profile
for aspect-oriented modeling. AOM: Aspect-oriented
Modeling with UML Workshop 2003. 3rd Inte rnational
Confe re nce on Aspe ct-Orie nte d Softw are D evelopm e nt
(AOSD)
http://lglwww.epfl.ch/workshops/uml2002/index.html

[9] Clark e, S. and W alk er, R. J. 2001. Composition patterns: An
approach to designing reusable aspects. In 23rd Int'l Conf.
Softw are Engine e ring (ICSE), (Toronto). IEEE, 5–14.

[10] Stein, D., Hanenberg, St., Unland, R., A UML-based
Aspect-Oriented Design Notation For AspectJ, in: Proc. of
AOSD '02 (Enschede, The Netherlands, Apr. 2002), ACM,
pp. 106-112.

[11] Elrad T., Aldawud O., Bader A.. “Aspect-oriented Modeling
- Bridging the Gap Between Design and Implementation”.
Proceedings of the First ACM SIGPLAN/SIGSOFT
International Conference on Generative Programming and
Component Engineering (GPCE). Pittsburgh, PA. October
6–8, 2002, pp. 189-202.

[12] Object Management Group, Unified Modeling Language
Specifications. Version 1.5 Mar 2003.

[13] Booch, Rumbaugh, Jacobson. 1999. The Unified Modeling
Language User Guide. Addison Wesley.

[14] Harel, David. 1987. Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Programming 8
231-274.

[15] Samek, Miro. 2002. Practical Statecharts in C/C++. CMP
Books.

[16] Kiczales, G., H ilsdale, E., H ugunin, J., Kersten, M ., Palm ,
J., and Gris w old, W . G. 2001. An overview of AspectJ. In
ECOOP 2001— Obje ct-Orie nte d Program m ing, 15th
Europe an Confe re nce , (Budapest), J. L. Knudsen, Ed.
LNCS, vol. 2072. Springer-Verlag, Berlin, 327–353.

[17] Aldawud, O., A Bader and T. Elltad, Weaving with
Statecharts, Aspect-Oriented Modeling with UML workshop
at the 1st International Conference on Aspect-Oriented

Software Development, April 2002.",
http://citeseer.ist.psu.edu/aldawud02weaving.html

[18] R.E. Filman and D.P. Friedman, Aspect-Oriented
Programming is Quantification and Obliviousness,
Workshop on Advanced Separation of Concerns, OOPSLA
2000, October 2000, Minneapolis. http://ic-
www.arc.nasa.gov/ic/ darwin/oif/leo/filman/text/oif/aop-
is.pdf",

[19] P. Tarr, H. Ossher, W. Harrison, St. Sutton Jr.: N Degrees of
Separation: Multi-Dimensional Separation of Concerns, in:
Proc. of ICSE '99, (Los Angeles, CA, May 1999) ACM, pp.
107-119

[20] Douglass , B. P. 1997. R eal-Tim e UML: Developing
Efficie nt Obje cts for Em be dde d Syste m s . Addison-Wesley,
Reading, Massachusetts.

[21] Douglass , B. P. 1999. UML statecharts: A white paper.
Em be dde d Syste m s Program m ing 12, 1 (Jan.).

[22] AspectJ Development Team. 2003. AspectJ FAQ.
http://dev.eclipse.org/viewcvs/indextech.cgi/aspectj-
home/doc/faq.html?rev=1.7#q:crosscutting

[23] Harel, David, Politi, Michal. 1998. Modeling Reactive
Systems with Statecharts, The Statemate Approach.
McGraw-Hill

[24] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R.
Sherman, A. Shtul-Trauring and M. Trakhtenbrot, 1990.
STATEMATE: A Working Environment for the
Development of Complex Reactive Systems, IEEE Trans. on
Software Engineering 16:4, 403-414.

